

FIFA LABORATORY TEST REPORT

TM Football Turf | 2015 01.01.2015

Product	HYBRID XWR PRO		
FIFA Licensee	Nurteks Hali San.ve Tic. A.S.		
Test Institute	Labosport Italia S.r.l.		
Test Number	125888		
External Test Number	22-0177IT		
Date of Test	13.04.2022		
Test Result	Passed		
Quality Level	FIFA Quality & Quality PRO		
Test Type	Initial		

Licensee

Main Address

Name	Nurteks Hali San.ve Tic. A.S.
Address	Nurteks Hali San.ve Tic. A.S. Yesilköy Mah. Atatürk Cad. EGS Bloklari No:12 B2 Blok Kat:4
ZIP / City	34149 / ISTANBUL
Website	
Contact Email	sales@nurteks.com.tr
Contact Phone	

Test institute

Main Address

Name	Labosport Italia S.r.l.	
Address	Labosport Italia S.r.l. Via Monza, 80	
ZIP / City	23870 / CERNUSCO LOMBARDONE	
Website	www.labosport.com	
Contact Email	labosport@labosport.it	
Contact Phone	+39/ 039 896 26 84	

Approval

. 0 0.0.0	
Test Institute Director	Roberto Armeni
Signature	Dulfun
Date	12.05.2022
Test Institute Engineer	Gabriele Greco
Signature	Solling
Date	12.05.2022

1 – Test Results

Vertical ball rebound FIFA Quality Vertical ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Reduced ball roll FIFA Quality Pro Reduced ball roll FIFA Quality Pro Reduced ball roll FIFA Quality Pro FIFA Quality Pro Shock absorption FIFA Quality Pro Shock absorption FIFA Quality Pro Deformation FIFA Quality Pro Deformation FIFA Quality Pro Deformation FIFA Quality Pro Rotational resistance FIFA Quality Pro Rotational resistance FIFA Passed Pa	Name	Concrete	Dogulé
Vertical ball rebound FIFA Quality Vertical ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Passed Pa	Name	Comment	Result
rebound FIFA Quality Vertical ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Angle ball rebound FIFA Quality Pro Reduced ball roll FIFA Quality FIFA Quality FIFA Quality Pro Reduced ball roll FIFA Quality Pro FIFA Quality Pro Passed FIFA Quality Pro Bassed FIFA Quality Pro Fotomation FIFA Passed FIFA P			
Quality Vertical ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Reduced ball roll FIFA Quality Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality FIFA Quality Reduced ball roll FIFA Quality Pro Passed FIFA Quality Pro Passed Passed Passed Passed Passed			Dd
Vertical ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Angle ball rebound FIFA Quality Pro Reduced ball roll FIFA Quality Pro Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality Pro FIFA Quality Pro Passed FIFA Quality Pro Passed FIFA Quality Pro Passed FIFA Quality Pro Passed Passed Passed Passed Passed Passed			Passed
rebound FIFA Quality Pro Angle ball rebound FIFA Quality Angle ball rebound FIFA Quality Pro Reduced ball roll FIFA Quality FIFA Passed Passed Auticut FIFA Passed Quality FIFA Passed Auticut FIFA Passed FIFA Passed Auticut FIFA Passed FIFA Passed FIFA Passed Auticut FIFA Passed FIF			
Quality Pro Angle ball rebound FIFA Quality Angle ball rebound FIFA Passed Quality Pro Reduced ball roll FIFA Quality Pro Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality Pro Deformation FIFA Passed Quality Pro Rotational Passed Quality Pro Rotational Passed Quality Pro Rotational Passed Quality Pro Rotational Passed Quality Pro Skin / surface FIFA Passed Quality Pro Skin / surface Passed T-Test Details Object Product Name			Daniel de la companya
Angle ball rebound FIFA Quality Angle ball rebound FIFA Quality Pro Reduced ball roll FIFA Quality Pro Reduced ball roll FIFA Quality Pro Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality Pro Passed FIFA Quality Pro Passed FIFA Quality Pro Deformation FIFA Quality Pro Deformation FIFA Quality Pro Deformation FIFA Quality Pro Destance FIFA Quality Pro Destance FIFA Quality Pro Rotational Resistance FIFA Passed Quality Pro Rotational Resistance FIFA Passed Quality Pro Fortails Jobject Product Name Product Name HYRBID XWR PRO 132/6 Product ID - Synthetic Turf System - Performance infill BLACK SBR Stabilising infill SILICA SAND Shock-pad or elastic layer Sub-base composition Passed I3.04.2022 Report created by Gabriele Greco Laboratory Test Passed Pa			Passed
rebound FIFA Quality Angle ball rebound FIFA Quality Pro Reduced ball roll FIFA Quality Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality Fo Shock absorption FIFA Quality Pro Passed			
Quality Angle ball rebound FIFA Quality Pro Reduced ball roll FIFA Quality Passed FIFA Quality Shock absorption FIFA Quality Pro Deformation FIFA Quality Pro Rotational Resistance FIFA Quality Pro Rotational Resistance FIFA Quality Rotational Resistance FIFA Quality Rotational Resistance FIFA Quality Pro Skin / surface Friction FIFA Rotational Resistance FIFA Rotational Rotational Resistance FIFA Ro			Darrad
Angle ball rebound FIFA Quality Pro Reduced ball roll FIFA Quality Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality FIFA Passed FIFA Passed FIFA Passed Quality FIFA Quality FIFA Passed FIFA Passed FIFA Passed FIFA Quality FIFA Quality FIFA Passed			Passed
rebound FIFA Quality Pro Reduced ball roll FIFA Quality Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality Shock absorption FIFA Quality Pro Passed Passed Pass			
Quality Pro Reduced ball roll FIFA Quality Shock absorption FIFA Quality Shock absorption FIFA Quality Pro Deformation FIFA Quality Deformation FIFA Quality Rotational resistance FIFA Quality Rotational resistance FIFA Quality Rotational resistance FIFA Quality Rotational resistance FIFA Passed Quality Rotational resistance FIFA Passed Quality Rotational resistance FIFA Passed Passed I - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Shock-pad or elastic layer Sub-base composition Passed Rigid engineered base Passed 1 - Test Details Test Institute Date(s) of test Report created by Gabriele Greco Laboratory Test			Daggad
Reduced ball roll FIFA Quality Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality Shock absorption FIFA Quality FIFA Quality FIFA Quality FIFA Quality Pro Deformation FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / surface friction FIFA Quality Pro Fassed Passed Skin / surface FIFA Quality Pro Skin / surface Friction Froduct ID			Passed
FIFA Quality Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality Shock absorption FIFA Quality Passed Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / surface friction Skin / surface friction Passed I - Test Details Object Product Name Performance infill System Performance infill Shock-pad or elastic layer Sub-base composition Passed Rigid engineered base Passed Rigid engineered base Passed Passed 1 - Test Details Test Institute Passed P			
Reduced ball roll FIFA Quality Pro Shock absorption FIFA Quality Shock absorption FIFA Quality Pro Deformation FIFA Quality Deformation FIFA Quality Poformation FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / surface friction Skin abrasion Passed			Passed
FIFA Quality Pro Shock absorption FIFA Quality Shock absorption FIFA Quality Pro Deformation FIFA Quality Deformation FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name Performance infill Stabilising infill Shock-pad or elastic layer Sub-base composition Passed Pass			
Shock absorption FIFA Quality Shock absorption FIFA Quality Pro Deformation FIFA Quality Deformation FIFA Quality Passed Passed Passed Passed			Passed
FIFA Quality Shock absorption FIFA Quality Pro Deformation FIFA Quality Deformation FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Passed Quality Rotational resistance FIFA Passed Passed 1 - Test Details Object Product Name Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Stabilising infill Stabilising infill SiliCA SAND Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Gabriele Greco Laboratory Test			
Shock absorption FIFA Quality Pro Deformation FIFA Quality Deformation FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Quality Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / surface friction Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name HYRBID XWR PRO 132/6 Product ID Synthetic Turf System Performance infill Stabilising infill Stabilising infill Stabilising infill Stabilising infill Stabilising infill Silica Sand Stabilising infill Silica Sand Si	· •		Passed
FIFA Quality Pro Deformation FIFA Quality Deformation FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / surface FIFA Quality Pro Skin / surface friction Skin abrasion 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test Passed Passed P			
Deformation FIFA Quality Deformation FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Passed Passed Passed 1 - Test Details Object Product Name Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Stabilising infill Shock-pad or elastic layer Sub-base composition Rigid engineered base Passed 1 - Test Details Test Institute Date(s) of test Report created by Gabriele Greco Laboratory Test			Passed
Quality Deformation FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Passed Passed Passed 1- Test Details Object Product Name Product Name Product ID Synthetic Turf System Performance infill SluCA SAND Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test Passed Pas			
Deformation FIFA Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Rigid engineered base Rabile Greco Laboratory Test Passed Passe			Passed
Quality Pro Rotational resistance FIFA Quality Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name HYRBID XWR PRO 132/6 Product ID Synthetic Turf System Performance infill BLACK SBR Stabilising infill SILICA SAND Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test Passed Passed Passed HYRBID XWR PRO 132/6			
Rotational resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / Surface Friction Skin abrasion Passed 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test Passed			Passed
resistance FIFA Quality Rotational resistance FIFA Quality Pro Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test Passed Pass			
Quality Rotational resistance FIFA Quality Pro Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Roder Report created by Laboratory Test Passed Passed Passed HYRBID XWR PRO 132/6 Passed BLACK SBR SILICA SAND SILICA SAND SILICA SAND Rigid engineered base Gabriele Greco Laboratory Test 22-0177/IT			Passad
Rotational resistance FIFA Quality Pro Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Rigid engineered base Rabilising Gabriele Greco Laboratory Test Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed SHYRBID XWR PRO 132/6 - SUB-DASE SILICA SAND			1 assect
resistance FIFA Quality Pro Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test Passed Passed Passed Passed HYRBID XWR PRO 132/6			
Quality Pro Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Rigid engineered base Cabriele Greco Laboratory Test Passed Passed Passed HYRBID XWR PRO 132/6			Passed
Skin / surface friction Skin abrasion Passed 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test Passed Passed Passed Passed Passed BLACK SPR SLICA SAND SILICA SAND Rigid engineered base 13.04.2022 Gabriele Greco Laboratory Test			1 dised
friction Skin abrasion Passed 1 - Test Details Object Product Name Product ID Synthetic Turf System Performance infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Laboratory Test Passed HYRBID XWR PRO 132/6 - SUB-BACK SBR SILICA SAND SILICA SAND Rigid engineered base 13.04.2022 Gabriele Greco 22-0177IT			
Skin abrasion Passed 1 - Test Details Object Product Name HYRBID XWR PRO 132/6 Product ID - Synthetic Turf System - Performance infill BLACK SBR Stabilising infill SILICA SAND Shock-pad or elastic layer - Sub-base composition Rigid engineered base 2 - Test Details Test Institute Date(s) of test 13.04.2022 Report created by Gabriele Greco Laboratory Test 13.2017/TIT			Passed
1 - Test Details Object Product Name			Passed
Product ID Synthetic Turf System Performance infill Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test HYRBID XWR PRO 132/6 SUB-DECEMBER STAND SILICA SAND Rigid engineered base 13.04.2022 Gabriele Greco Laboratory Test 22-0177IT			
Product ID - Synthetic Turf System - Performance infill BLACK SBR Stabilising infill SILICA SAND Shock-pad or elastic layer - Sub-base composition Rigid engineered base 2 - Test Details Test Institute Date(s) of test 13.04.2022 Report created by Gabriele Greco Laboratory Test 22.0177IT			HYRBID XWR PRO 132/6
Synthetic Turf System Performance infill BLACK SBR Stabilising infill SILICA SAND Shock-pad or elastic layer Sub-base composition Performance infill SILICA SAND Rigid engineered base 13.04.2022 Report created by Laboratory Test 22.0177IT			-
System Performance infill BLACK SBR Stabilising infill SILICA SAND Shock-pad or elastic layer Sub-base composition Rigid engineered base 2 - Test Details Test Institute Date(s) of test Report created by Gabriele Greco Laboratory Test			
Performance infill Stabilising infill SILICA SAND Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Gabriele Greco Laboratory Test BLACK SBR SILICA SAND	-		-
Stabilising infill Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test SILICA SAND			BLACK SBR
Shock-pad or elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test Report created by Gabriele Greco Laboratory Test			
elastic layer Sub-base composition 2 - Test Details Test Institute Date(s) of test			5.2.3.3.3.
Sub-base composition 2 - Test Details Test Institute Date(s) of test			-
composition 2 - Test Details Test Institute Date(s) of test Report created by Laboratory Test Rigid engineered base Rigid engineered base 13.04.2022 Gabriele Greco			
2 - Test Details Test InstituteDate(s) of test13.04.2022Report created byGabriele GrecoLaboratory Test22.0177IT			Rigid engineered base
Date(s) of test 13.04.2022 Report created by Gabriele Greco Laboratory Test 22.0177IT		stitute	
Report created by Gabriele Greco Laboratory Test 22-0177IT	•		13.04.2022
Laboratory Test 22-0177IT			
	report number		22-0177IT

Name	Comment	Result
Test Institute		22.047717
Project number		22-0177IT
3 - Product Declaration	on (Manufacturer)	
Manufacturer		Nurteks Halı San. Tic. As.
Tuft pattern		STRAIGHT
Yarn		
manufacturer		TenCate
yarn 1		
Product name,		MS D2 2200x3 XWR FIELD
code yarn 1		GREEN, S17
Detailed tuft		
decitex (Dtex)		19500
[g/10000m]		
Pile yarn profile		er.
yarn 1		Elipse
Pile thickness (µ		350.0
m) yarn 1		360.0
Pile colour (RAL)		DAI 420 40 20
value 1 yarn 1		RAL 120 40 30
Pile colour (RAL)		
value 2 yarn 1		-
Pile colour (RAL)		
value 3 yarn 1		-
Pile width (mm)		1.10
yarn 1		1.10
Number of	1504770	000000
tufts/m2 yarn 1	ISO1773	8260.00
Pile length (mm)	150 2540	50.00
yarn 1	ISO 2549	60.00
Pile weight (g/m2)	150 0543	745.00
yarn 1	ISO 8543	745.00
Pile yarn		
characterization		PE
yarn 1		
Pile yarn dtex		7000
yarn 1		7000
Yarn		
manufacturer		TenCate Thiolon B.V
yarn 2		
Product name,		MS D2 2200x3 XWR LIME
code yarn 2		GREEN, S18
Pile yarn profile		Films
yarn 2		Elipse
Pile thickness (µ		360.0
m) yarn 2		360.0
Pile colour (RAL)		DAI 110 40 40
value 1 yarn 2		RAL 110 40 40
Pile colour (RAL)		
value 2 yarn 2		-
Pile colour (RAL)		
value 3 yarn 2		
Pile width (mm)		1 10
yarn 2		1.10

Date: 13.04.2022

Name	Comment	Result
Number of	Comment	nesuit
tufts/m2 yarn 2	ISO1773	8260.00
Pile length (mm)		
	ISO 2549	60.00
yarn 2		
Pile weight (g/m2)	ISO 8543	745.00
yarn 2		
Pile yarn		DE.
characterization		PE
yarn 2		
Pile yarn dtex		7000.0
yarn 2		
Yarn		
manufacturer		TenCate
yarn 3		
Product name,		TN 5500/1 LIME GREEN
code yarn 3		THE SOURCE CHILDREN
Pile yarn profile		Fibrile
yarn 3		Tibriic
Pile thickness (µ		120.0
m) yarn 3		120.0
Pile colour (RAL)		LIME GREEN
value 1 yarn 3		Elivie dicelii
Pile colour (RAL)		_
value 2 yarn 3		_
Pile colour (RAL)		
value 3 yarn 3		-
Pile width (mm)		0.00
yarn 3		0.00
Number of	ISO1773	8260.00
tufts/m2 yarn 3	1301773	8260.00
Pile length (mm)	ISO 3540	60.00
yarn 3	ISO 2549	60.00
Pile weight (g/m2)	150 0542	505.00
yarn 3	ISO 8543	595.00
Pile yarn		
characterization		PE
yarn 3		
Pile yarn dtex		
yarn 3		5500.0
Primary backing		
Product name,		H18
code		
Primary backing		
Manufacturer		Tencate
Re-enforcement		
scrim Product		_
name, code		
Re-enforcement		
scrim		_
Manufacturer		
Secondary	1	
backing Product		SBR LATEKS
name, code		JUN LATERS
name, code		

Comment	Result
	Styron
	1200.0
	>40
	740
	3525.0
	3323.0
	Bonded
	Auka Flaar
	Ayka Floor
	Auto Floor
	Ayka Floor
	200
	200
	Helmetin
	SERTA TEKSTİL ÜRÜNLERİ
	SANAYİ VE PAZARLAMA
	LTD. ŞTİ.
	_
	-
	0.000
	NRT SBR RUBBER
	NURTEKS HALI SAN.
	TİC.AS.
	1 215
	1 - 3,15
FN 440FF	A2 D2
pren 14955	A2 - B3
EN 933-Part 1	1 - 3,15
	prEN 14955

Name	Comment	Result
Performance Infill	Comment	nesare
Bulk density	EN 1097-3	0.450
(g/cm3)	214 1037 3	0.450
Performance Infill		
Application rate		16.0
(kg/m2)		10.0
Stabilising Infill		
Product name,		SILICA SAND
code		SILICA SAIVO
Stabilising Infill		
Manufacturer		Emek, Fares Kum
Stabilising Infill		
Material type		SILICA
Stabilising Infill		
Material grading		0,315 - 0,8
Stabilising Infill		
Particle shape	prEN 14955	Round high sphericity – C1
Stabilising Infill		
Particle size range	EN 933-Part 1	0,315 - 0,8
Stabilising Infill		
Bulk density	EN 1097-3	1.50
(g/cm3)	LIN 1097-3	1.50
Stabilising Infill		
Application rate		20.0
(kg/m2)		20.0
Shockpad, E-layer		
Product name,		_
code		-
Shockpad, E-layer		
Manufacturer		-
Shockpad, E-layer		
Composition		-
Shockpad, E-layer		
Bulk density		0.00
(g/cm3)		0.00
Shockpad, E-layer		
Thickness	EN 1969	0.0
Shockpad, E-layer		
Shock absorption	FIFA 4a	0.0
(%)	TII A 40	0.0
Shockpad, E-layer		
Deformation	FIFA 5a	0.0
Shockpad, E-layer		
Tensile strength		0.00
(MPa)		
Shockpad, E-layer		
Mass per unit		0.0
area (kg/m2)		
Other, detail		-
3 – Test Results Player	/ Surface Interaction	
Rotational	. Januara micardenom	
Resistance Initial	27 - 48 Nm	41
Dry (Quality)	2, 10 14111	''
1-17 (4 55116)/	1	1

		-
Name	Comment	Result
Rotational		
Resistance Initial	32 - 43 Nm	41
Dry (Pro)		
Rotational		
Resistance Initial	27 - 48 Nm	40
Wet (Quality)		
Rotational		
Resistance Initial	32 - 43 Nm	40
Wet (Pro)		
Rotational		
Resistance after	22 42 Nm	42
simulated wear	32 - 43 Nm	43
3'000 cycles (5*)		
Rotational		
Resistance after	22 42 N	
simulated wear	32 - 43 Nm	0
3'000 cycles (20*)		
Rotational		
Resistance after	27 40 11	45
simulated wear	27 - 48 Nm	45
6'000 cycles (5*)		
Rotational		
Resistance after		
simulated wear	27 - 48 Nm	0
6'000 cycles (20*)		
3 - Test Results Product	dentification field prod	luct
Performance infill		
Theremographic		
analysis Organic		64.8
[%] - Product		
Declaration		
Performance infill		
Theremographic		
analysis		
Inorganic [%] -		35.2
Product		
Declaration		
Performance infill		
Theremographic		
analysis		
Elastomer [%] -		58.7
Product		
Declaration		
4 - Product Identification		
Artificial Turf		
Carpet mass per		3270
unit area [g/m2]		
Artificial Turf		
Tufts per unit		8127
area [m2]		J
Artificial Turf		
Pile lenght above		60.0
backing [mm]		00.0
Ducking [illili]		

Name	C	Do could
Name	Comment	Result
Artificial Turf		1977
Pile weight [g/m2]		
Detailed tuft		
decitex (Dtex)		18850
[g/10000m]		
Artificial Turf		
Water		4716
permeability of		4710
carpet [mm/h]		
Artificial Turf		13
Free pile height		15
Performance infill		
Particle size		1,25 - 3,15
range [mm]		
Performance infill		10.00
Particle shape		A2 - B3
Performance infill		
Bulk density		0.470
[g/cm3]		
Performance infill		
Infill depth [mm]		47
Performance infill		
Thermographic		
analysis organic		64
[%]		
Performance infill		
Theremographic		
		36
analysis		
inorganic [%]		
Stabilising infill		0.315 1.0
Particle size range		0,315 - 1,0
[mm]		
Stabilising infill		C1
Particle shape		
Stabilising infill		
Bulk density		1.49
[g/cm3]		
Shock pad / E-	if part of	
layer Shock	supplied	0.0
absorption [%]	system	
Shock pad / E-	if part of	
layer	supplied	0.0
Deformation	system	
Shock pad / E-	if part of	
layer Thickness	supplied	0.0
layer Tillekiless	system	
		Due to different DSC
		devices and potential
		difference in the test
Other detail		method used, the shape
Other, detail		and peak temperatures of
		the DSC analysis may differ
		from the FIFA
		requirement.
		1 requirement.

Date: 13.04.2022

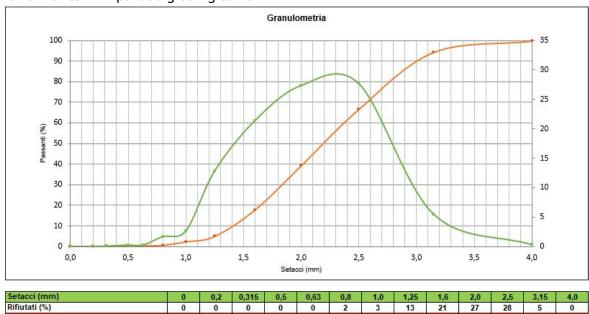
	1.5	
Name	Comment	Result
		Field Green Fibrillated
		UVA report SPORTSLABS
		number 17162/2366 issued
		on 16/12/2016.
5 – Test Results Ball / Su	rface interaction	
Vertical Ball		
Rebound Initial	0.6 - 1m	0.73
Dry (Quality)		
Vertical Ball		
Rebound Initial	0.6 - 0.85m	0.73
Dry (Pro)		
Vertical Ball		
Rebound Initial	0.6 - 1m	0.71
Wet (Quality)		
Vertical Ball		
Rebound Initial	0.6 - 0.85m	0.71
Wet (Pro)		
Vertical Ball		
Rebound after	0.6 - 0.85m	0.83
simulated wear	0.0 - 0.83111	0.83
3'000 cycles (5*)		
Vertical Ball		
Rebound after	0.6 - 1m	0.86
simulated wear	0.6 - 1111	0.80
6'000 cycles (5*)		
Vertical Ball		
Rebound after	0.6 - 0.85m	0.00
simulated wear	0.0 - 0.83111	0.00
3'000 cycles (20*)		
Vertical Ball		
Rebound after	0.6 - 1m	0.00
simulated wear	0.6 - 1111	0.00
6'000 cycles (20*)		
Angle Ball	45 - 80 %	53
Rebound Dry	45 - 80 %	33
Angle Ball	45 - 80 %	62
Rebound Wet	45 - 80 %	62
Reduced Ball Roll		
Initial Dry	4 - 10 m	6.3
(Quality)		
Reduced Ball Roll	4 - 8 m	6.3
Initial Dry (Pro)	7 - 0 111	0.5
Reduced Ball Roll		
after simulated	4 - 8 m	7.1
wear 3'000 cycles	7 - 0 111	/.1
(5*) Dry		
Reduced Ball Roll		
after simulated	4 - 8 m	7.3
wear 3'000 cycles	4-0111	1.5
(5*) Wet		
Reduced Ball Roll		
after simulated	4 0 m	
wear 3'000 cycles	4 - 8 m	0.0
(20*) Dry		

Reduced Ball Roll after simulated wear 6'000 cycles (20*) Wet Reduced Ball Roll after simulated wear 6'000 cycles (5*) Dry Reduced Ball Roll after simulated wear 6'000 cycles (5*) Wet Reduced Ball Roll after simulated wear 6'000 cycles (5*) Wet Reduced Ball Roll after simulated wear 6'000 cycles (5*) Wet Reduced Ball Roll after simulated wear 6'000 cycles (20*) Wet Reduced Ball Roll after simulated wear 6'000 cycles (20*) Wet Reduced Ball Roll after simulated wear 6'000 cycles (20*) Wet Shock absorption Initial Dry 57 - 68 % 65.0 Columbia	N		D. 1
after simulated wear 3'000 cycles (20") Wet Reduced Ball Roll after simulated wear 6'000 cycles (5") Dry Reduced Ball Roll after simulated wear 6'000 cycles (5") Wet Reduced Ball Roll after simulated wear 6'000 cycles (5") Wet Reduced Ball Roll after simulated wear 6'000 cycles (20") Dry Reduced Ball Roll after simulated wear 6'000 cycles (20") Dry Reduced Ball Roll after simulated wear 6'000 cycles (20") Wet Shock absorption Initial Dry 57 - 68 % 65.0	Name	Comment	Result
Wear 3'000 cycles 2-8 m			
West 2000 West		4 - 8 m	0.0
Reduced Ball Roll after simulated wear 6'000 cycles (5*) Dry Reduced Ball Roll after simulated wear 6'000 cycles (5*) Wet Reduced Ball Roll after simulated wear 6'000 cycles (25*) Wet Reduced Ball Roll after simulated wear 6'000 cycles (20*) Dry Reduced Ball Roll after simulated wear 6'000 cycles (20*) Dry Reduced Ball Roll after simulated wear 6'000 cycles (20*) Wet Reduced Ball Roll after simulated 4 - 12 m 0.0 (20*) Wet (20*) Wet (20*) Wet (20*) Wet (20*) Wet (20*) Wet (20*) Wet (20*) Wet (20*) Wet (20*) Wet (20*) Wet (20*) (, ,		
after simulated wear 6'000 cycles (5*) Dry Reduced Ball Roll after simulated wear 6'000 cycles (5*) Wet A - 12 m 7.8 7.8 Reduced Ball Roll after simulated wear 6'000 cycles (5*) Wet A - 12 m 0.0 (20*) Dry			
Wear 6'000 cycles (5*) Dry			
Section Sect		4 - 12 m	7.6
Reduced Ball Roll after simulated wear 6'000 cycles (5*) Wet Reduced Ball Roll after simulated wear 6'000 cycles (20*) Dry Reduced Ball Roll after simulated wear 6'000 cycles (20*) Dry Reduced Ball Roll after simulated wear 6'000 cycles (20*) Wet A - 12 m 0.0	, ,		
after simulated wear 6 000 cycles (5*) Wet Reduced Ball Roll after simulated wear 6 000 cycles (20*) Dry Reduced Ball Roll after simulated wear 6 000 cycles (20*) Dry Reduced Ball Roll after simulated wear 6 000 cycles (20*) Wet Shock absorption Initial Dry (Quality) 57 - 68 % 65.0 Shock absorption Initial Dry (Pro) 62 - 68 % 64.4 (Quality) 57 - 68 % 64.4 (Quality) 58 - 68 % 64.4 (Quality) 59 - 68 % 64.4 (Quality) 62 - 68 % 64.4 (Quality) 62 - 68 % 64.4 (Quality) 62 - 68 % 64.4 (Quality) 62 - 68 % 64.4 (Quality) 62 - 68 % 64.4 (Quality) 62 - 68 % 64.4 (Quality) 62 - 68 % 64.4 (Quality) 63 - 68 % 64.4 (Quality) 64 - 64 % 64 - 64 % (Quality) 65 - 68 % 66 - 64 & 64 & 64 & 64 & 64 & 64 & 64 &			
Wear 6'000 cycles 4 - 12 m 7.8			
Wear 6 '000 cycles (5*) Wet		4 - 12 m	7.8
Reduced Ball Roll after simulated wear 6'000 cycles (20*) Dry Reduced Ball Roll after simulated wear 6'000 cycles (20*) Wet Shock absorption Initial Dry 57 - 68 % 65.0			7.0
after simulated wear 6'000 cycles (20*) Dry Reduced Ball Roll after simulated wear 6'000 cycles (20*) Wet Shock absorption Initial Dry (20*) Wet Shock absorption Initial Dry (Pro) Shock absorption Initial Dry (Pro) Shock absorption Initial Wet (Quality) Shock absorption 62 - 68 % 64.4 (Quality) Shock absorption 62 - 68 % 64.4 (Quality) Shock absorption 62 - 68 % 64.4 (Quality) Shock absorption 62 - 68 % 64.4 (Quality) Shock absorption 62 - 68 % 64.4 (Quality) Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 62 - 68 % 64.4 Shock absorption 64 - 68 % 64.4 Shock absorption 67 - 68 % 64.20 Shock absorption 57 - 68 % 64.20 Other, detail	<u> </u>		
Wear 6'000 cycles (20*) Dry Reduced Ball Roll after simulated Wear 6'000 cycles (20*) Wet Shock absorption Initial Dry 57 - 68 % 65.0 Shock absorption Initial Dry (Pro) 62 - 68 % 64.4 (Quality) Shock absorption Initial Wet (Pro) 62 - 68 % 64.4 (Quality) Shock absorption Initial Wet (Pro) 62 - 68 % 64.4 (Quality) Shock absorption Initial Wet (Pro) 62 - 68 % 64.4 (Quality) Shock absorption after simulated wear 3'000 cycles (5*) Shock absorption after simulated wear 3'000 cycles (20*) 57 - 68 % 58.4 Shock absorption after simulated wear 6'000 cycles (5*) 57 - 68 % 58.4 Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 67.90 Shock absorption 50°C 57 - 68 % 64.20 Cother, detail -			
Wear 6 '000 cycles (20*) Dry		4 - 12 m	0.0
Reduced Ball Roll after simulated wear 6'000 cycles (20*) Wet Shock absorption Initial Dry (Quality) 57 - 68 % 65.0 (20*) Wet Shock absorption Initial Dry (Pro) 62 - 68 % 65.0 (20*) Shock absorption Initial Dry (Pro) 62 - 68 % 64.4 (20*) Shock absorption Initial Wet (Pro) 62 - 68 % 64.4 (20*) Shock absorption Initial Wet (Pro) 62 - 68 % 64.4 (20*) Shock absorption after simulated wear 3'000 cycles (5*) 62 - 68 % 62.2 (5*) Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 58.4 (5*) Shock absorption after simulated wear 6'000 cycles (5*) 57 - 68 % 58.4 (5*) Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 67.90 59°C 57 - 68 % 64.20 64.20 64.20 64.20 64.20 64.20 64.20 64.20 64.20 65.0 65			
after simulated wear 6'000 cycles (20*) Wet Shock absorption Initial Dry (Quality) Shock absorption Initial Dry (Pro) Shock absorption Initial Dry (Pro) Shock absorption Initial Wet (Quality) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Wet (Pro) Shock absorption Initial Dry (Pro) Shock absorption Initial Dry (Pro) Shock absorption Initial Dry (Pro) Shock absorption Initial Dry (Pro) Shock absorption Initial Dry (Pro) Shock absorption Initial Wet (Pro) Sh			
Wear 6'000 cycles (20*) Wet			
Wear 6'000 cycles (20*) Wet		4 - 12 m	0.0
Shock absorption Initial Dry (Quality) S7 - 68 % 65.0			
Initial Dry (Quality) 57 - 68 % 65.0 65.0 65.0			
Quality Shock absorption Initial Dry (Pro) 62 - 68 % 65.0			
Shock absorption		57 - 68 %	65.0
Initial Dry (Pro) 62 - 68 % 65.0 Shock absorption			
Shock absorption		62 - 68 %	65.0
Initial Wet (Quality) S7 - 68 % 64.4		02 00 /0	65.6
Quality Shock absorption			
Shock absorption 62 - 68 % 64.4 Initial Wet (Pro) 62 - 68 % 64.4 Shock absorption 62 - 68 % 62.2 (5*) 62 - 68 % 62.2 Shock absorption 62 - 68 % 0.0 Shock absorption 62 - 68 % 57 - 68 % Shock absorption 57 - 68 % 58.4 Shock absorption 57 - 68 % 0.0 Shock absorption 57 - 68 % 0.0 Shock absorption 57 - 68 % 67.90 Shock absorption 57 - 68 % 64.20 Other, detail - -		57 - 68 %	64.4
Initial Wet (Pro) 62 - 68 % 64.4 Shock absorption after simulated 62 - 68 % 62.2 Shock absorption after simulated 62 - 68 % 0.0 Shock absorption after simulated 62 - 68 % 0.0 Shock absorption after simulated 57 - 68 % 58.4 Shock absorption after simulated 57 - 68 % 0.0 Shock absorption after simulated 57 - 68 % 0.0 Shock absorption 57 - 68 % 67.90 Shock absorption 50°C 57 - 68 % 64.20 Other, detail -			
Shock absorption after simulated wear 3'000 cycles (5*) 62 - 68 % 62.2 Shock absorption after simulated wear 3'000 cycles (20*) 62 - 68 % 0.0 Shock absorption after simulated wear 6'000 cycles (5*) 57 - 68 % 58.4 Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 0.0 Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 67.90 Shock absorption 50°C 57 - 68 % 64.20 Chock absorption -5°C 57 - 68 % - Other, detail -		62 - 68 %	64.4
after simulated wear 3'000 cycles (5*) Shock absorption after simulated wear 3'000 cycles (20*) Shock absorption after simulated wear 6'000 cycles (5*) Shock absorption after simulated wear 6'000 cycles (5*) Shock absorption after simulated wear 6'000 cycles (20*) Shock absorption 57 - 68 % Shock absorption 57 - 68 % Shock absorption 57 - 68 % Chock absorption 57 - 68 % Shock absorption 57 - 68 % Chock absorption 57 - 68 % Shock absorption 57 - 68 % Chock absorption 57 - 68 %			
wear 3'000 cycles 62 - 68 % 62.2 Shock absorption after simulated wear 3'000 cycles (20*) 62 - 68 % 0.0 Shock absorption after simulated wear 6'000 cycles (5*) 57 - 68 % 58.4 Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 0.0 Shock absorption 50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail -			
(5*) Shock absorption after simulated wear 3'000 cycles (20*)		62 - 68 %	62.2
Shock absorption after simulated wear 3'000 cycles 62 - 68 % (20*) 0.0 Shock absorption 57 - 68 % after simulated 57 - 68 % wear 6'000 cycles 57 - 68 % (5*) 0.0 Shock absorption 57 - 68 % Shock absorption 57 - 68 % Shock absorption 57 - 68 % Other, detail -			
after simulated 62 - 68 % 0.0 wear 3'000 cycles 62 - 68 % 0.0 Shock absorption 57 - 68 % 58.4 Shock absorption 57 - 68 % 0.0 after simulated wear 6'000 cycles (20*) 57 - 68 % 0.0 Shock absorption 57 - 68 % 67.90 Shock absorption 57 - 68 % 64.20 Other, detail - -	` '		
wear 3'000 cycles 62 - 68 % 0.0 Shock absorption after simulated wear 6'000 cycles (5*) 57 - 68 % 58.4 Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 0.0 Shock absorption 50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail -			
Shock absorption after simulated wear 6'000 cycles (5*) 57 - 68 % 58.4		62 - 68 %	0.0
Shock absorption after simulated wear 6'000 cycles (5*) 57 - 68 % 58.4 Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 0.0 Shock absorption 50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail -			
after simulated wear 6'000 cycles (5*) 57 - 68 % 58.4 Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 0.0 Shock absorption 50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail -			
wear 6'000 cycles 57 - 68 % 58.4 (5*) 5hock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 0.0 Shock absorption 50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail -			
(5*) Shock absorption after simulated wear 6'000 cycles (20*) 57 - 68 % 0.0 Shock absorption 50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail -		57 - 68 %	58.4
Shock absorption after simulated wear 6'000 cycles 57 - 68 % (20*) 57 - 68 % Shock absorption 57 - 68 % Shock absorption 57 - 68 % Other, detail -			
after simulated wear 6'000 cycles (20*) 57 - 68 % 0.0 Shock absorption 50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail -			
wear 6'000 cycles 57 - 68 % 0.0 (20*) 5hock absorption 50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail - -			
(20*) Shock absorption 57 - 68 % 67.90 50°C 57 - 68 % 64.20 Shock absorption 57 - 68 % - -5°C 64.20 -		57 - 68 %	0.0
Shock absorption 50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail -			
50°C 57 - 68 % 67.90 Shock absorption -5°C 57 - 68 % 64.20 Other, detail -			
Shock absorption 57 - 68 % 64.20 Other, detail -		57 - 68 %	67.90
-5°C			
Other, detail -		57 - 68 %	64.20
			-
		Surface interaction	

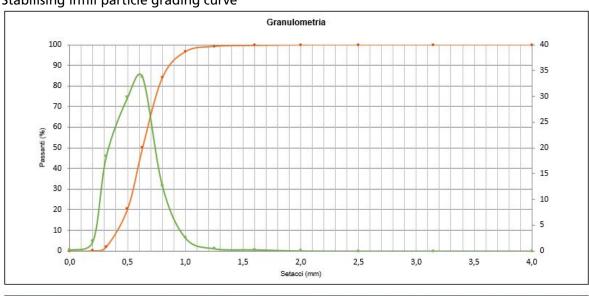
Name	Commont	Possilé
Name	Comment	Result
Deformation	4 44	40.0
Initial Dry	4 - 11 mm	10.0
(Quality)		
Deformation	4 - 10 mm	10.0
Initial Dry (Pro)		10.0
Deformation		
Initial Wet	4 - 11 mm	8.9
(Quality)		
Deformation	4 - 10 mm	8.9
Initial Wet (Pro)	4 - 10 mm	0.9
Deformation		
after simulated		
wear 3'000 cycles	4 - 10 mm	8.0
(5*)		
Deformation		
after simulated		
wear 3'000 cycles	4 - 10 mm	0.0
(20*)		
Deformation		
after simulated	4 - 11 mm	7.3
wear 6'000 cycles		
(5*)		
Deformation		
after simulated	4 - 11 mm	0.0
wear 6'000 cycles	- 11111111	0.0
(20*)		
Skin / surface	0.35 - 0.75 µ	0.64
friction Dry	0.33 - 0.73 μ	0.04
Skin / surface		
friction Dry	0.35 - 0.75 μ	0.65
3'000 cycles	·	
Skin / surface		
friction Dry	0.35 - 0.75 µ	0.68
6'000 cycles		
Skin abrasion		
Dry	± 30 %	23
Skin abrasion		
Dry 3'000 cycles	± 30 %	26
Skin abrasion	± 30 %	28
Dry 6'000 cycles		
•	(arricial, light, water)	
Pile yarn 1		
Colour change	≥ Grey scale 3	4-5
after artificial		
weathering		
Pile yarn 2		
Colour change	≥ Grey scale 3	4
after artificial	_ 5.0, 500.0 5	
weathering		
Pile yarn 3		
Colour change	> Grovesala 2	4
after artificial	≥ Grey scale 3	4
weathering		
	l .	

Name	Comment	Result
Pile yarn 1 Peak		
Breakage Force		15.20
before artificial		15.20
weathering		
Pile yarn 1 Peak		
Breakage Force		45
after artificial		15
weathering		
Pile yarn 1 Peak		
Breakage Force		
Green Reference		15.20
value before		15.20
artificial		
weathering		
Pile yarn 1 Peak		
Breakage Force		
Variation after	Change ≤ 25	1.00
weathering from	%	1.00
Green Reference		
value		
Pile yarn 2 Peak		
Breakage Force		15.20
before artificial		15.20
weathering		
Pile yarn 2 Peak		
Breakage Force		15,3
after artificial		15,5
weathering		
Pile yarn 2 Peak		
Breakage Force		
Green Reference		15.20
value before		13.20
artificial		
weathering		
Pile yarn 2 Peak		
Breakage Force		
Variation after	Change ≤ 25	1.00
weathering from	%	1.00
Green Reference		
value		
Pile yarn 3 Peak		
Breakage Force		53.90
before artificial		33.30
weathering		
Pile yarn 3 Peak		
Breakage Force		45,0
after artificial		
weathering		
Pile yarn 3 Peak		
Breakage Force		
Green Reference		53.90
value before		
artificial		
weathering		

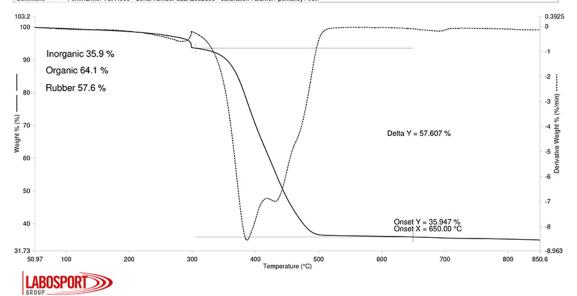
Date: 13.04.2022

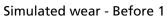

Name	C	DIt
Name	Comment	Result
Pile yarn 3 Peak		
Breakage Force Variation after	Change + 25	
	Change ≤ 25	16.51
weathering from	%	
Green Reference		
value		
Polymeric infill		
Colour change after artificial	≥ Grey scale 3	5
weathering		
Polymeric infill		
Visual change in		N. 1
composition	No change	No change
after artificial		
weathering		
Complete system	190 may /b	2502
Water	> 180 mm/h	3582
permeability		
Stitched joints	≥	
Strength un-	1000N/100mm	0
aged		
Stitched joints	≥	
Strength water	1000N/100mm	0
aged		
Bonded joints	75/400	400
Strength un-	≥ 75/100mm	100
aged		
Bonded joints	75/400	02
Strength water	≥ 75/100mm	93
aged		
Carpet tuft	4011	40
Withdrawal force	≥ 40N	48
un-aged		
Carpet tuft	. 401	42
Withdrawal force	≥ 40N	42
water aged		
Heat Category	for	Category 3
	information	
7 - Miscellaneous (shock p	oad, sub-base - it part of	r tne system)
Shock Pad / E-		
layer tensile	≥ 0.15 MPa	0.00
strength un-		
aged		
Sub-base		-
Composition		
Sub-base Particle		-
size range		
Sub-base Particle		-
shape		
Sub-base		-
Thickness		
Sub-base		
Compaction &		-
test method		

Name	Comment	Result
Other, detail		-
Turf Product Report Det	ails	
Shockpad, E-layer		No Shocknad
Type Category		No Shockpad
Performance Infill		
Material type		End of Life Tires Infill (ELT)
Category		
Splash		
Characteristics		≥ 1.5%
Category		



2 – Test Images
Performance infill particle grading curve


Stabilising infill particle grading curve


- 1) Hold for 1.0 min at 50.00°C 2) Heat from 50.00°C to 300.00°C at 15.00°C/min 3) Hold for 8.0 min at 300.00°C

4) Heat from 300.00°C to 650.00°C at 15.00°C/min 5) Heat from 650.00°C to 850.00°C at 25.00°C/min 6) Hold for 1.0 min at 850.00°C

22/04/2022 14:40:51

Date: 13.04.2022

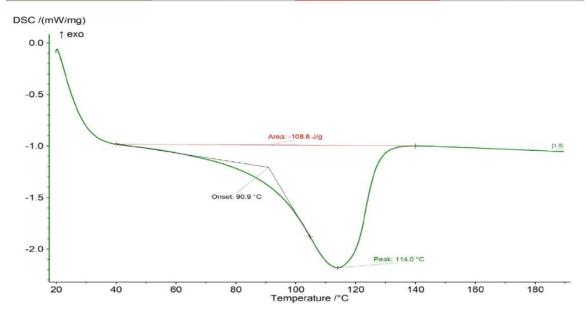
Simulated wear - Before 2

Simulated wear - Before 3

Simulated wear - Before 4

Simulated wear - After 1

Simulated wear - After 2



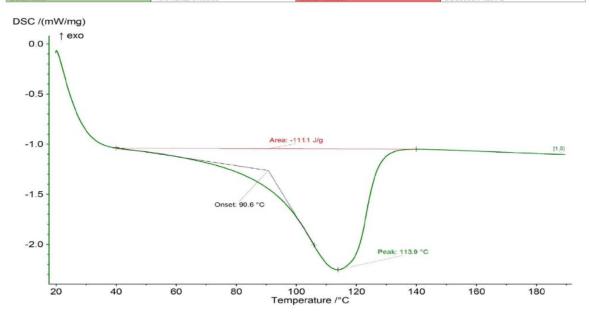
Yarn Characteristics DSC

Laboratory:	Labosport Italia Srl	Identity:	22-0177IT
Project:	22-0177IT	Sample:	VS
Operator:	Matteo	Sample mass:	6.54 mg
Date/Time:	13/04/2022 05:24:55	Serial number	DSC3500A-1254-L

TEST CYCLES:
1) Heat from 20,0 °C to 190,0 °C at 20,0 °C/min
2) Hold for 5,0 min at 190,0 °C

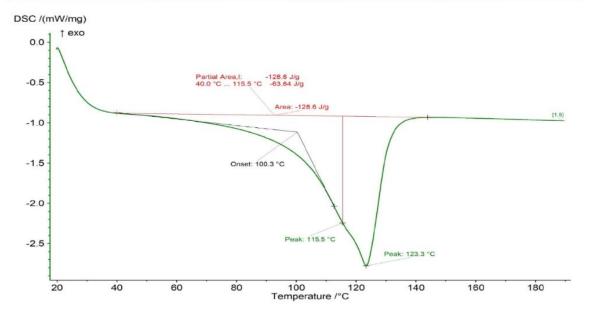
3) Cool from 190 °C to 20,0 °C at 20,0 °C/min 4) Hold for 5,0 min at 20,0 °

5) Heat from 20,0 °C to 190,0 °C at 20,0 °C/min NETZSCH DSC 3500 SERIES


Date: 13.04.2022

Yarn Characteristics DSC - 2

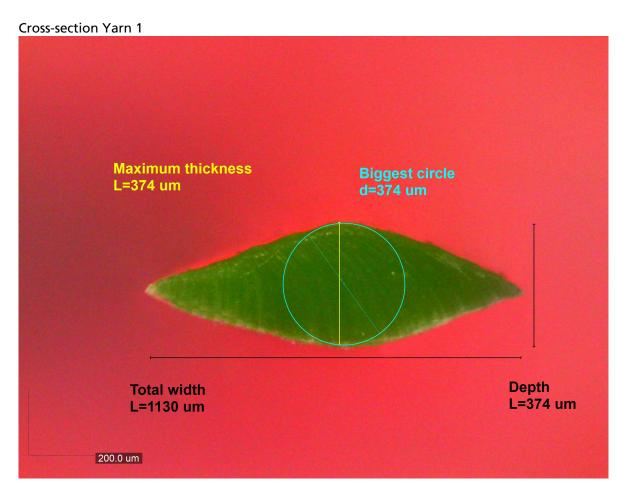
Total Control of the	Laborated Malla Col	1.4 matters	00.0477IT
Laboratory:	Labosport Italia Srl	Identity:	22-0177IT
Project:	22-0177IT	Sample:	VC
Operator:	Matteo	Sample mass:	6.55 mg
Date/Time:	13/04/2022 04:38:09	Serial number	DSC3500A-1254-L


TEST CYCLES:		
 Heat from 20,0 °C to 190,0 °C at 20,0 °C/min 	 Cool from 190 °C to 20,0 °C at 20,0 °C/min 	Heat from 20,0 °C to 190,0 °C at 20,0 °C/min
 Hold for 5,0 min at 190,0 °C 	 Hold for 5,0 min at 20,0 ° 	NETZSCH DSC 3500 SERIES

Yarn Characteristics DSC - 3

Laboratory:	Labosport Italia Srl	Identity:	22-0177IT
Project:	22-0177IT	Sample:	V FIBRILLATO
Operator:	Matteo	Sample mass:	6.59 mg
Date/Time:	13/04/2022 03:51:23	Serial number	DSC3500A-1254-L

TEST CYCLES:		
 Heat from 20,0 °C to 190,0 °C at 20,0 	°C/min 3) Cool from 190 °C to 20,0 °C at 20,0 °C/min	 Heat from 20,0 °C to 190,0 °C at 20,0 °C/min
 Hold for 5.0 min at 190.0 °C 	4) Hold for 5.0 min at 20.0 °	NETZSCH DSC 3500 SERIES



Performance Infill - picture

